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SUMMARY 

The temperature programme optimization substrategies for a mixture with 
non-intersecting retention time approximation functions are described. For mixtures 
of compounds whose elution functions intersect, the determination of strategies for 
possible solutions and of the corresponding substrategies for temperature programme 
optimization is derived. Heuristic methods for the minimization of the retention times 
of the most difficult to separate component pairs are presented. Further, the calcu- 
lation of retention times and peak widths for optimization purposes is discussed. 

INTRODUCTION 

In Part I’, the problem of optimizing the temperature programme for a given 
separation problem on a given column was converted into a minimization problem 
of retention times of the most difficult to separate component pairs. It was shown 
that these component pairs determine the total number of substrategies or the total 
number of partial optimization problems. The analysis was limited to mixtures that 
do not contain components with intersecting retention time approximation functions 
while simultaneously obeying the inequality 

m;x{ T&r, n]} < rnF{ T&r, A> n&l, 2,..., N - 1) (1) 

l For Part I, see ref. 1. Symbols used here are defined in Part I. 
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(i.e., mixtures of type I). These mixtures represent the majority of instances in prac- 
tice. 

The optimization in this instance is equivalent to the minimization of a single 
strategy, resulting in a single optimal temperature programme. If condition 1 is not 
met, at least one of the substrategies is split into two independent substrategies. In 
this event there is not necessarily a single optimum solution (a single optimum tem- 
perature programme). 

For mixtures with intersecting approximation functions (mixtures of type II) 
several strategies can be derived, none of them necessarily fulfilling all the constraints. 
In this instance no single optimum temperature programme exists. 

The optimization of each substrategy is equivalent to the minimization of the 
retention time of the second component of that component ,pair which determines 
the given substrategy. At the same time, several constraints’ have to be fulfilled. For 
this purpose, the standard NAG library minimization programs2*3, based on min- 
imization of adjacent Lagrange functions by gradient methods, were originally uti- 
lized. In the course of the optimization experiments, the disadvantages of these 
methods became evident (inefficient consumption of both computing time and com- 
puter memory). Therefore, a heuristic minimization algorithm has been developed. 

DISCUSSION 

Decomposition of substrategies 
Fig. 1 illustrates the approximation functions of a type I mixture. The com- 

ponents n, and n, + 1 belong to the kth substrategy, and therefore 
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Fig. 1. Subtrajectory for the component pair n,, n, + 1. 
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For all the other components n~(n, _ i + 2, nk - 1) there holds: 

Consequently, the original kth substrategy decomposes into two independent sub- 
strategies k1 and kZ. The k,th substrategy relates to component pair n,, n, + 1 and 
the kzth substrategy to component pair nk, nk + 1. For the k - 1 th substrategy, the 
last constraint (cJ, Part I, eqn. 44) is 

TN, I. k, = TP, k - l(tZ. k - 1) > TL[nz, &I (4) 

In the k,th substrategy, we seek a temperature programme TP, k2(t) involving one 
segment with a linear temperature decrease’. Generally, with substrategies including 
components of the nZ, n, + 1 type, there is not necessarily an optimal temperature 
programme as all the possible programmes lead to R.=, nz + 1 < 1 or 

RI% ))h + 1 < 1. In this instance two independent separations are necessary. 
If for the n,, n, + 1 component pair in the kth substrategy the inequality 

Tdn,, 4 < Tdn, nl n = nk - 1 + 2,..., nk + 1 (5) 

is valid and, simultaneously 

T&k - 1 + 2, nk - 1 + 21 > T& - 1 + 3, nk 1 31 . . T&z=, nZ] (6) 

(where nk = n, -t- 2) holds, the kth substrategy decomposes into [nZ - (nk _ i + 
2)]/2 + 2 individual substrategies, provided that n, - (nk _ 1 + 2) is even; otherwise 
the number of substrategies is n, - (nk - 1 + 2) + I]/2 + 2. 

Determination of substrategies for mixtures of type II 
The formulation of this problem is analogous to that for mixtures with non- 

intersecting approximation curves (mixtures of type I). For mixtures of type I there 
is only one strategy, i.e., a single sequence of substrategies leading to a single optimum 
temperature programme. In an extreme case, if some of the substrategies decompose, 
no single optimum temperature programme must necessarily exist. For type II mix- 
tures, there are a number of possible strategies depending on the number of inter- 
secting pairs. Some of these (possibly all) strategies will not lead to a satisfactory 
solution and other ones might, but only one of the solvable strategies leads to the 
shortest retention time of the last component. This strategy has the optimum trajec- 
tory. 

Mixtures of type II are characterized’ by non-zero elements TL[n,m] and 
TL[m,n] in the matrices TL[ZV, N] and T&V, NJ. Fig. 2 illustrates a mixture of type II 
containing two pairs of components with intersecting approximation functions (com- 
ponents 2, 3 and 5, 6). The vertical solid lines between the curves mark the upper 
temperature separability limit of the particular pair of components, and the dot- 
and-dash line marks the lower limit. In the matrices T&V, N] and TL[N, N] there are, 
in addition to the diagonal elements, also elements with subscripts 2, 3; 3, 2; 5, 6; 
and 6, 5. Let the subrow belonging to the nth element be denoted as a group of 
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TxW TX@ - TMAx T 
Fig. 2. Approximation functions of a mixture of type II. 

elements with subscripts n, n; n, n + 1;. . .; n, N and the subcolumn as a group of 
elements with subscripts n, n; n + 1, n;. . .; N, n. For determining the individual 
strategies, the elements of the principal diagonal of the matrix TH[N, Nj are ordered 
according to their value. If the elements are out of the diagonal in some row (and 
thus in some column), first of all the lowest temperature value in the subrow (or in 
the subcolumn) is sought for and used as an element of the strategy, provided that 

mzx{T&z, ml} < m${rHb, ml> m = n, n + l,..., N (7) 

or 

mtx{Tl[m, nl} < min{TH[m, nl> m = n, n + l,..., N (8) 

The conditions 7 and 8 signify that the components with intersecting approximation 
functions are separated with R,, ,,, > 1 at the lowest temperature of the subrow (or 
the subvcolumn). On the other hand, this temperature value cannot be used for 
determining the substrategies, because there will always be the possibility of insuf- 
ficient separation (R”, ,,, < 1) of at least for one component pair. 

Hence every row in the matrix TH[N, Nj with non-zero elements out of the 
principal diagonal doubles every strategy step if conditions 7 and 8 are fulfilled. In 
the case illustrated in Fig. 2, four strategies are theoretically possible, given by the 
substrategies for the most difficult to separate pairs: I, 6-5; II, 3-2, 5-6; III, 2-3, 
6-5, 7; and IV, 2-3, 5-6, 7 (6-5 refers to the pair of components 6 and 5, and 7 to 
the pair of components 7 and 8). Generally, if the approximation functions of the 
mixture intersect n times, then maximally 2” strategies exist. 

If none of these strategies is satisfactory (i.e., in every strategy then is at least 
one pair with resolution R,, ,,, c l), more analyses must be executed with partial 
temperature programmes. 

Two situations may influence the design of individual substrategies. In the 
mixture being analysed, there might be component pairs or groups that are not of 
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interest; hence their resolution can be arbitrary. If such a pair happens to be the most 
difficult to separate pair, the corresponding substrategy is either changed or deleted. 
The other situation is exemplified by mixtures that contain components that cannot 
be separated at all (R&r, m] < 1). Any temperature programme other than 
Tr(r) = T&r, m] leads to a further resolution loss with pairs of this type. 

Heuristic method of optimization 
The retention time of a component tAP, II + I is minimized in the first sub- 

strategy while looking for the optimal temperature incrtements Dr, 1; Dz, I, and for 
the corresponding time intervals tl, 1; tz, 1. Moreover, the independent variable 
TN, 1, 1, i.e., the initial temperature at the beginning of the temperature programme, 
is optimized. 

The heuristic method for the minimization of the retention times of the most 
difficult to separate components is based on the following considerations, as ex- 
plained for a mixture of type I. The most difficult to separate components in the kth 
substrategy migrate, until the components corresponding to the previous substrategy 
(nk _ 1, nk - I + 1) are eluted, at a mean velocity lower than the characteristic 
velocity (the mean velocity of the components during isothermal analysis at a tem- 
perature TH, at which the components are separated with R,, n + 1 = 1)2. Hence, 
their resolution in the column is greater than 1 until this moment. After the elution 
of the components nk - 1, nk - 1 + 1, a subtrajectory tl, k, D1, L, t2, k, D2, k is 
calculated, so that the pair &, & + 1 is eluted in the shortest time (tl, k + t2, k = 
min). As the resolution value for the components nk, nk + 1 at the beginning of the 
kth substrategy in the column is greater than 1, the substrajectory at which the col- 
umn temperature T(t) > TH[nk, nk] can be sought in the kth substrategy. At these 
temperatures, in isothermal separations, the resolution would be insufficient: 
R,,, nt + I < 1. However, in the subtrajectory considered at this temperature, the 
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Fig. 3. Optimization of subtrajectories in the 1st substrategy. 
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resolution of the peak pair decreases simultaneously with the component retention 
time increments. 

By iteration, fAP, “L + 1 can be minimized. The values of ty! b Dy! b t$! f and 
Dy! t in the ith iteration step are determined according to the magnitude of 
R& ;,‘I 1, the boundary conditions being fulfilled’. For R(,:,-&‘I I > 1, the pro- 
grammed temperature can be increased in the iteration step i + 1 and, consequently, 
the value of fAP, 4 + 1 can be decreased. In contrast, a temperature decrease leads 
to an increase in tAP, ni + 1 for R$i,‘i 1 < 1. 

Consider first the 1st substrategy where a course of the temperature pro- 
gramme Tp, 1 (t), consisting of two linear sections, is searched for so that R, n + i 
= 1. Simultaneously, the temperature at the end of the first subtrajectory should be 
as close as possible to the temperature of T&, nz]. The shortest retention time of 
the component nl + I on isothermal separation, tA, “, + 1 (T&, q]), is known 
from the temperature separability ranges of the components. The temperature pro- 
gramme will be partially below the value of TH[nl, nl], and partially above this value. 
The retention time will be CAP, n1 + 1 z t,& “, + 1 (T&I, n]). Fig. 3 illustrates the 
processes leading to such temperature programmes. The first estimation of the tra- 
jectory DC) i, tit) 1, D$‘,) 1, th? 1 and @) i, 1 is determined as follows. The values of 
the temperature increments will be chosen as 

DC’ 1 = 0 
(9) 

0%’ I = 2(T&2, nz] - T&i, nll)/tA, nI + ~V’rh, RI) 

and the initial temperature 

If n? 1, 1 < TL[nl, nr], which is indicated by TL[nl, nl] in Fig. 3, then t’?’ # 0, but 
holds that 

t’t’ = {Ti[n~, n11 - (T&z, n21 - Dl’,‘l tA, n, + I(T&I, ~~l)))lD% (11) 

and expression 10 reduces to 

For a trajectory determined in this way #I4 “I’ 
68 ,n + 1,sA 9, “,’ &, n + I and R!,:! “, 

nitude of the value of Rk! n1 
+ I are calculated. According to the mag- 

+ I iterations are started. For Rj,:! ni + 1 > 1, the value 
of TN, 1, I E<#!I, I, TH[nl, nl]) is increased until the value of 2%; i, 1 for which 

= 1 is found. The subtrajectory is then determined by the values of 
g;::’ ,: & i, Dy! 1 = D\t’ 1 t$=,’ 1, D$‘: 1 = D$!jl. If R!,:! n1 + 1 < 1, 5‘$,),, 1 re- 
mains constant and tl, 1 is changed in the course of the iterative calculations. Con- 
sequently, the magnitude of D2,i is adapted until the values of 
fi! 1, 1, t\“) i, t$? 1, D\t) 1, Of’,) 1 for which R,,, nt + 1 = 1 are found. The value of 
D2, 1 is restricted by the condition D 2, 1 < DMAX; if the solution leads to greater DZJ 
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values then Dsb! 1 = D,,,nax. By subsequent calculations a subtrajectory is derived with 
a value for TN, 1, z < T&, nz]. Then it holds for the initial temperature: 

a?l, 1 = T~[nl, nl] - DMAX TV, n, + I(THL n11)/2 (13) 

For GJ 1, 1 < T&l, nl] eqn. 11 is modified to 

(141 

According to the magnitude of the resolution R$,:! n1 + 1, the subtrajectory is calcu- 
lated in the same way as in the previous case. 

Calculation of kth substrategy 
The temperature TN, 1, c at the beginning of the kth substrategy is known. Fig. 

4 shows the procedure for looking up the kth subtrajectory. For the enitial temper- 
ature programme in the kth subtrajectory we chose 

DI, k = &AX 

t\!'k = (Tdnk + 1, nk + I] - TN, I, k)/Dl, k (1% 
DY’ k=o 

and the value of t$tBk is implicitly given by the calculated value of 
tAP, nk + r [i.e., @‘k = fAP, nk + 1 - 4? + 11 . If TN, 1.9 > T&k + 1, nk + 11 holds, the 
calculation of #,)k involves the nearest higher temperature which fulfils the condition 
TN.I,R < T&k + j, nk + jI* Next, the values of tAP,n,, tAP,nk + 1, 

SAP, nt SAP. m, + 1 and R,, “k + 1 are calculated. If Rj,:! nt + 1 > \. the other tem- 
perature programme of the same shape with the values of t\fk > tit’,‘ is chosen. By 

Fig. 4. Subtrajectories in the kth substrategy. 
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iteration, 
R(i) 

the value of t$“,) k for which Rg! “h + 1 = 1 is calculated. If 
I)k, 4 + 1 < 1, the temperature programme in the iteration steps is set according to 

eqn. 15 and, at the same time, the value of Dy! k is decreased [thus increasing the 
value of ty! d. By approximating RIP,!)., + 1 = 1 at the temperature TN, 2, k = T&i, 
nh, the calculations are stopped. For TN, 2, k < TH[mk, nk] (the end point of such 
subtrajectory is marked by the number 1 in Fig. 4) a subtrajectory is searched for, 
leading to the same retention times and ending at the temperature TN, 2, k (point 1 
in Fig. 4). The optimum subtrajectory is defined by 

D\!,‘k = 0 

ty! k + tg k = ty.21 (16) 

0 c Dy! k < DMAX 

At the same time, the value of D$!,“k and the corresponding time intervals are deter- 
mined: 

t!tt3h = (T&k + I, nk + I] - l%! I, k)/@,3k 
(17) 

and 

R(b3) 
“k, “k + 1 xl; TN, 1, k + I = T&k + 1, nk + I] 

The heuristic procedure described is applied for the calculation of the optimum tra- 
jectory of type I mixtures. The same procedure is used in the case of split subtrajec- 
tories and for type II mixtures. The programme always looks for the first local mini- 
mum fAP, nk + 1, fulfilling the given conditions for the prescribed shape of linear 
temperature sections. 

Calculation of retention times and peak widths 
While optimizing the temperature programme, the retention time increments, 

the zone widths and the position of components that are still in the column are 
calculated in individual substrategies. The distance passed by a zone in the kth sub- 
strategy is given by’ 

t1.k t2.k 

kh’, n = 11 k n I , +  12, k, II = 

s 

I/~A, .WI, k(t)ldt +  l/t~. .[Tz, k(t)ldt (18) 

0 0 

In practice, two cases can occur: either t 1, k and t2, k are known, or one and possibly 
both upper limits of the integral in eqn. 18 are unknown. In the latter instance, these 
times are calculated from 

k-l 

1 = c ‘L, n + ‘LP, n w 

i=l 



OPTIMIZATION OF TEMPERATURE PROGRAMMING IN GC. II. 243 

The upper limits of the integrals 18 are known for the components n~(n~ + 2, N> in 
the kth substrategy. Hence, tl, k and f2, k are implicitly determined by the retention 
time of the slower component from the pair determining the kth substrate&. The 
upper limit of at least one integral in eqn. 18 is unknown for the components 
n~(a - 1 + 2, nk + 1). The peak widths are always calculated for the known values 
of the upper limits’. 

The calculation of the function values from eqn. 18 can be divided into two 
groups: calculation of a definite integral of an analytically given function: and cal- 
culation of the integral to its upper limit. The calculation of a definite integral is one 
of the most com,mon problems in numerical mathematics. Popular solution methods 
are those of Newton-Cotes, Tschebyshew and Gaus4. The implementation of these 
methods on computers requires discrete numbers of points of the integrated func- 
tions. The number of points can be adapted to the integration range according to 
the slope of the integrated functions. 

The calculation oif eqn. 18 and the zone width increment, eqn. 13l, can be 
transformed into the solution oif a set of two linear differential equations. The first 
equation in the kth substrategy is 

dkLp, n 

~ = l/f& n[Tk(f)l 
dt 

with the initial condition 

k-l 

kLP, “(0) = 1 %P, ” 121) 

i=l 

and the calculation is terminated if 

IAP, .(kfAP, .) = 1 ’ 

The second equation is 

dk&p, n 
-= 

dt 
sA, .[r,(r)l,_, .t;ltll h(t) 

-1 

(22) 

(23) 

with the initial condition 

k-l 

4!3”P, .(O) = c ‘&P, n 

i=l 
(24) 

In the first substrategy it is supposed that ‘I AP, “(0) = IMIN, which does not infhrence 
the solution significantly but removes the effect of singularity in eqn. 23 for t = 0. 
The differentials can be solved by any numerical method utilized for the solution of 
linear differential equation systems, e.g., by Runge-Kutta’s, Adam’s or Gear’s 
method@. 
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CONCLUSION 

The arrangement of substrategies in single strategies for the optimization of 
temperature programmes for type II mixtures has been described. An heuristic 
method for the minimization of the retention times of difficult to separate pairs of 
components, determining individual substrategies, has been presented in detail. This 
method is advantageous with respect to demands on computer memory and conver- 
gency speed compared with commercial programs for minimization (cJ, the libraries 
supplied with medium- or large-sized computers). 
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